

Course on

Formal Language & Automata Theory Department of CSE, GIET University, Gunupur, Odisha

Outline of the Lecture

- **D** Regular set and Regular Expression
- **Operators in Regular expressions**
- **I** Finite Automata from Regular expression
- **Arden's theorem**
- **©** Regular expression from Finite Automata
- **D** Pumping Lemma for Regular languages
- **Closure properties of Regular languages**

Regular set and Regular Expression

Regular Expression(RE): It can be thought of as a algebraic description of DFA and NDFA. It is a sequence of characters that forms a search pattern, mainly for use in pattern matching with strings, or string matching.

Regular Set: The set which can be represented by RE.

Regular language(RL): A language is said to be Regular if there is a RE for that language.(later we will discuss more clearly)

Regular Exp	Regular set
a	{a}
a+b+c	{a,b,c}
ab+ba	{ab,ba}
ab(d+e)	{abd,abe}
a*	$\{\lambda,a,aa,aaa\}$
abc*de	(abde,abcde,abccde,}
(a+b)*	$\{\lambda,a,b,aa,ab,ba,bb,aaa,aab,bba\}$

Department of CSE, GIET University, Gunupur

Regular Expression(RE):

If Σ is an alphabet, then the class of RE over Σ is defined as follow

- 1. The symbol $\boldsymbol{\epsilon}$ and $\,\boldsymbol{\phi}$ are RE
- 2. If $a \in \Sigma$ then a is a RE
- 3. Union of two RE is a RE(R1+R2)
- 4. Concatenation of two RE is RE ie (R1R2)
- 5. If R is a RE then R^* is a RE.
- 6. If R is a RE then (R) is RE
- 7. Nothing else will be RE unless it is constructed from point 1 to point 6 Example:
- Note: a+b means either a or b
- 1. Write the RE for the language over $\Sigma = (0)$, that recognize even number of 0
- 2. Write the RE for the language over $\Sigma = (1)$ that recognize odd number of 1
- 3. Write the RE for the language over $\Sigma = (0,1)$ that recognize even 0 followed by even 1.
- 4. Write the RE for the language over $\Sigma = (0,1)$ that recognize substring 010

Note: write the RE for all DFA which we designed.

Write the RE over $\Sigma = (0, 1)$ for the following

- 1. Even number of 0
- 2. Accept the string 1000 only
- 3. Started with 0.
- 4. Ended with 1.
- 5. Started with 0 and ended with 1
- 6. Odd number of 1
- 7. Started with 00
- 8. Accept the string having substring 010
- 9. Accept the string having substring 1101
- 10. Accept the string having substring 1100
- 11. Even number of 0 and even number of 1
- 12. Even number of 0 and odd number of 1
- 13. Odd number of 0 and even number of 1
- 14. odd number of 0 and odd number of 1
- 15. String length module 3 = 0 (length is multiple of 3)
- 16. Decimal representation of string modulo 3 = 0

- Write the RE over Σ = (a, b) for the following
- 1. Accept the string a *
- 2. Accept the string b ⁺
- 3. Even number of a
- 4. Even number of a followed by even number of b
- 5. Even number of a followed by odd number of b
- 6. Odd number of a followed by even number of b
- 7. Odd number of a followed by odd number of b
- 8. Accept the string having at least 3 a
- 9. Accept the string having at least 3 b
- 10. Accept the string having at least 3 a and at least 2 b
- 11. Exactly three a and exactly 2 b

Algebra for RE: If P, Q, R are RE then following holds

- $\phi + R = R$ 1.
- 2. $\phi R = R \phi = \phi$
- ER=R E=R3
- 3=*3 4.
- $3 = *\Phi$ 5
- R+R=R6.
- R*R*=R* 7.
- $RR = RR = R^+$ 8.
- $(R^{*})^{*} = R^{*}$
- 9.
- $\mathcal{E}+\mathbf{RR}^*=\mathbf{R}^*=\mathcal{ER}^*\mathbf{R}$ 10.

(P+Q)R=PR+QR

(P+Q)*=(P*Q*)*=(P*+Q*)*

(PQ)*P=P(QP)*11.

R(P+Q)=RP+RQ8

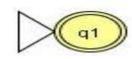
12.

13.

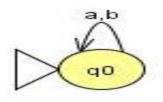
14.

Building Finite Automata from Regular expression

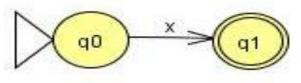
There is an FA that accepts the language defined by regular expression E; i.e., the language {E}



2. There is an FA defined by the regular expression \emptyset ; i.e., the language with no words, which is \emptyset . [Let $\sum = \{a,b\}$].



3. There is an FA that accepts the language L defined by the regular expression x ; i.e., $L = \{x \}$, where $x \in \Sigma$, so language L consists of only a single word and that word is the single letter x



Based on Rule 2, we get following definition of FA:

If there is an FA called FA₁ that accepts the language defined by the regular expression r_1 and there is an FA called FA₂ that accepts the language defined by the regular expression r_2 , then there is an FA called FA₃ that accepts the language defined by the regular expression $r_1 + r_2$.

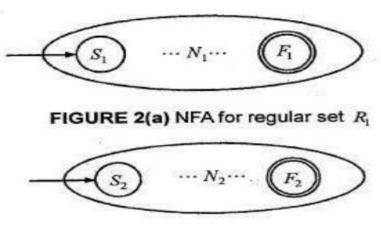
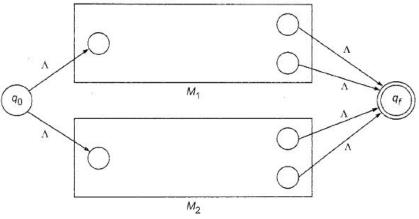
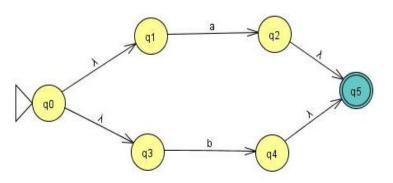


FIGURE 2(b) NFA for regular set R2



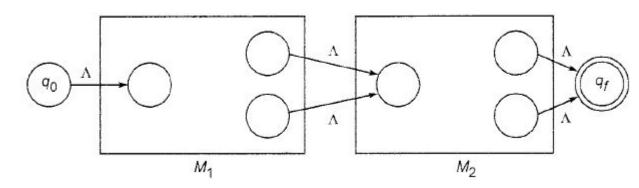


Saturday, March 6, 2021

Department of CSE, GIET University, Gunupur

Based on Rule 3, we get following definition of FA:

If there is an FA called FA_1 that accepts the language defined by the regular expression r1 and there is an FA called FA_2 that accepts the language defined by the regular expression r_2 , then there is an FA called FA_3 that accepts the language defined by the regular expression r_1r_2 , which is the concatenation.



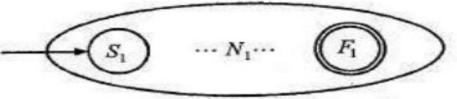


FIGURE 2(a) NFA for regular set R₁

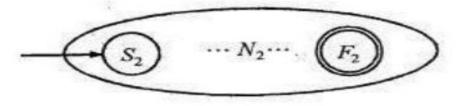
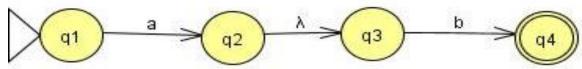


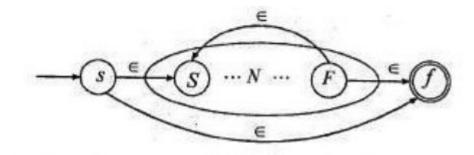
FIGURE 2(b) NFA for regular set R₂



NDFA accepting *L/*Kleene star.

····N····

NDFA accepting L*/Kleene star



Design FA from the given RE

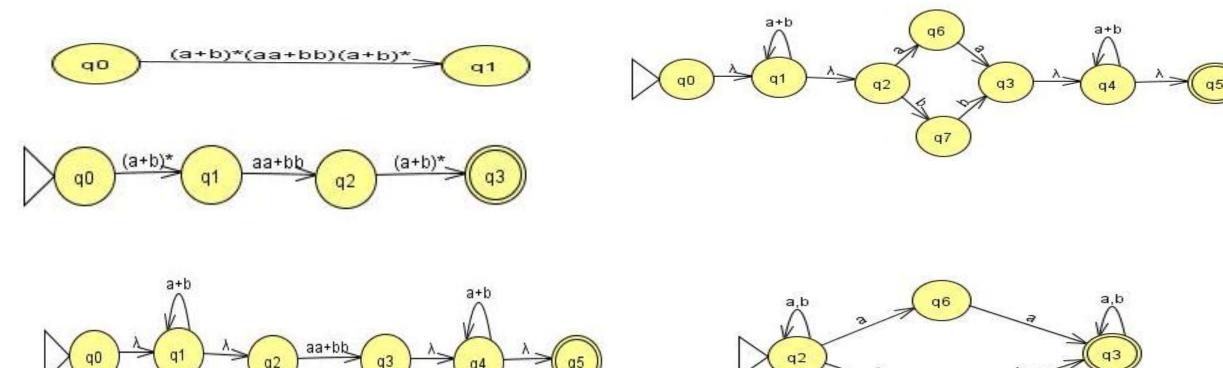
- 1. a+b
- 2. (a+b)c
- 3. (a+b)*
- 4. (a+b)*c

1. $(0+1)^*(00+11)(0+1)^*$

Department of CSE, GIET University, Gunupur

Design FA from the given RE

(a+b)*(aa+bb)(a+b)* 1.



α4

q7

Arden's Theorem:

Let P and Q are RE over Σ and P does not contain \mathcal{E} , then following equivalents R=Q+RP---(A) has an unique solution R=QP*

Proof: To prove this theorem we put the value of R in equation A. Hence, we get Q + RP = Q + (Q + RP)P

$$= Q+QP+RPP$$

= Q+QP+RP2
= Q+QP+QP2+...QPi+RPi+1
= Q(E+P+P2+...+Pi)+RP(i+1)
Q+RP = Q(E+P+P2+...+Pⁱ)+RPⁱ⁺¹
for all i>=0(B)

Let us assume w be the string of length in the set R. then w belongs to the equation B. But as P does not contain \mathcal{E} , hence \mathbb{RP}^{i+1} does not contain any string of length less than i+1 and so w does not belongs to the set \mathbb{RP}^{i+1} . This means w belongs to the QP*.

Show that (1+00*1)+(1+00*1) (0+10*1)* (0+10*1)= 0*1(0+10*1)*(1+00*1) [(E+(0+10*1)*(0+10*1)] By R-14

(1+00*1)(0+10*1)* By R-10

(E+00*)1(0+10*1)* By R13

0*1(0+10*1)* By Arden's Theorem

- 10 $\mathcal{E}+\mathbf{RR}^*=\mathbf{R}^*=\mathcal{ER}^*\mathbf{R}$
- 11 (PQ)*P=P(QP)*
- $12 (P+Q)^{*}=(P^{*}Q^{*})^{*}=(P^{*}+Q^{*})^{*}$
- 13 (P+Q)R=PR+QR
- 14 R(P+Q)=RP+RQ

Show that E+1*(011)*(1*(011)*)*=(1+011)*

=(1*(01)*)* as E+PP*=P*

 $=(1+01)^*$ as $(p^*+Q^*)^*=(P+Q)^*$

- 10 $\mathcal{E}+RR^*=R^*=\mathcal{E}R^*R$
- 11 (PQ)*P=P(QP)*
- 12 $(P+Q)^{*}=(P^{*}Q^{*})^{*}=(P^{*}+Q^{*})^{*}$
- 13 (P+Q)R=PR+QR
- 14 R(P+Q)=RP+RQ

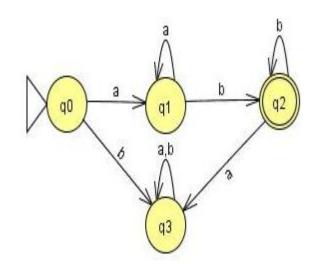
Finite Automata to Regular Expression

We can use Arden's theorem to find the regular expression from a given finite automata.Assumptions;

Finite automata has only one initial state. No λ move

No λ move

Consider the incoming arrows for a node •From this graph we can write equations as $q0=\lambda$ (No incoming arrow on q0) q1=q0.a + q1.a (from q0,a and q1,b) q2=q1.b+q2.b (from q1,b and q2,b) q3 = q0.b + q3.a + q3.b + q2.a(from q0,b; from q3,b; from q3,a; from q2,a)



$$q0 = \mathcal{E}$$
(1)

$$q1 = q0.a + q1.a$$
(2)

$$q2 = q1.b + q2.b$$
(3)

$$q3 = q0.b + q3.a + q3.b + q2.a$$
(4)

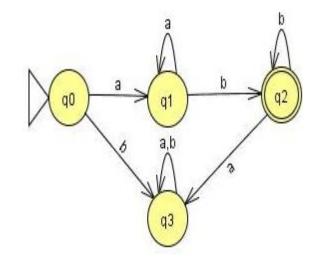
$$q1= \mathcal{E} a+q1a = a+q1a=Q+RP=>R=QP*$$

$$q1=aa*$$

$$q2=aa*b+q2b = Q+RP =>R=QP*$$

$$q2=aa*bb*$$

Now q2 is a final state therefore our conversion ends here.



Example

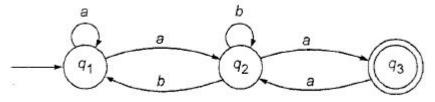


Fig. 5.13 Transition system of Example 5.8.

ql = q1a + q2b + E-----(1) q2 = q1a + q2b + q3a. (2) q3 = q2a (3) $q_2 = q_1 a + q_2 b + q_2 aa$ $= q_1 a + q_2 (b + aa)$ $= q_1 a (b + aa)^*$

Substituting q_2 in q_1 , we get

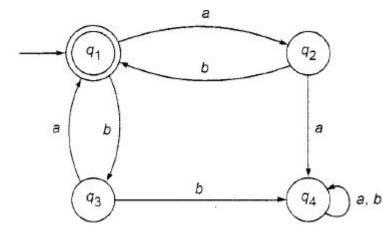
Hence,

 $q_{l} = q_{l}a + q_{l}a(b + aa)^{*}b + \Lambda$ = $q_{l}(a + a(b + aa)^{*}b) + \Lambda$ $q_{l} = \Lambda(a + a(b + aa)^{*}b)^{*}$ $q_{2} = (a + a(b + aa)^{*}b)^{*} a(b + aa)^{*}$ $q_{3} = (a + a(b + aa)^{*}b)^{*} a(b + aa)^{*}a$

Since q_3 is a final state, the set of strings recognized by the graph is given by

(a + a(b + aa)*b)*a(b + aa)*a

Example



ql = q2b + q3a + E ----- (1) q2 = q1a (2) q3 = q1b (3)q4 = q2a + q3b + q4a + q4b (4)

$$\mathbf{q}_{1} = \mathbf{q}_{2}\mathbf{b} + \mathbf{q}_{3}\mathbf{a} + \Lambda$$
$$\mathbf{q}_{2} = \mathbf{q}_{1}\mathbf{a}$$
$$\mathbf{q}_{3} = \mathbf{q}_{1}\mathbf{b}$$
$$\mathbf{q}_{4} = \mathbf{q}_{2}\mathbf{a} + \mathbf{q}_{3}\mathbf{b} + \mathbf{q}_{4}\mathbf{a} + \mathbf{q}_{4}\mathbf{b}$$

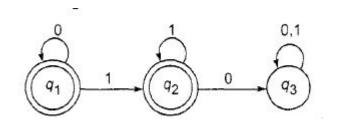
As q_1 is the only final state and the q_1 -equation involves only q_2 and q_3 , we use only q_2 - and q_3 -equations (the q_4 -equation is redundant for our purposes). Substituting for q_2 and q_3 , we get

$$\mathbf{q}_1 = \mathbf{q}_1 \mathbf{a}\mathbf{b} + \mathbf{q}_1 \mathbf{b}\mathbf{a} + \Lambda = \mathbf{q}_1(\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a}) + \Lambda$$

By applying Theorem 5.1, we get

$$\mathbf{q}_1 = \Lambda(\mathbf{ab} + \mathbf{ba})^* = (\mathbf{ab} + \mathbf{ba})^*$$

Example



 $\begin{array}{l} q_1 = q_1 0 + & (1) \\ q_2 = q_1 1 + q_2 1 \\ q_3 = q_2 0 + q_3 0 + q_3 1 \end{array} \tag{2}$

By applying Theorem 5.1 to the q_1 -equation, we get

```
q_1 = \Lambda 0^* = 0^*
```

So.

```
\mathbf{q}_2 = \mathbf{q}_1 \mathbf{1} + \mathbf{q}_2 \mathbf{1} = \mathbf{0} * \mathbf{1} + \mathbf{q}_2 \mathbf{1}
```

Therefore,

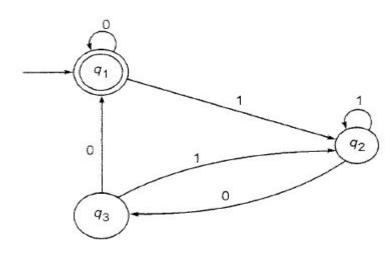
 $q_2 = (0*1)1*$

As the final states are q_1 and q_2 , we need not solve for q_3 :

$$\mathbf{q}_1 + \mathbf{q}_2 = \mathbf{0}^* + \mathbf{0}^*(\mathbf{11}^*) = \mathbf{0}^*(\Lambda + \mathbf{11}^*) = \mathbf{0}^*(\mathbf{1}^*)$$
 by I_9

The strings represented by the transition graph are 0*1*. We can interpret the

Example



$$\begin{array}{l} q_1 = q_1 0 + q_3 0 + \varepsilon ----- & (1) \\ q_2 = q_1 1 + q_2 1 + q_3 1 & (2) \\ q_3 = q_2 0 & (3) \end{array}$$

So.

$$\mathbf{q}_2 = \mathbf{q}_1 \mathbf{1} + \mathbf{q}_2 \mathbf{1} + (\mathbf{q}_2 \mathbf{0}) \mathbf{1} = \mathbf{q}_1 \mathbf{1} + \mathbf{q}_2 (\mathbf{1} + \mathbf{0})$$

By applying Theorem 5.1, we get

$$q_2 = q_1 l(1 + 01)^*$$

Also,

 $q_{1} = q_{1}0 + q_{3}0 + \Lambda = q_{1}0 + q_{2}00 + \Lambda$ $= q_{1}0 + (q_{1}1(1 + 01)^{*})00 + \Lambda$ $= q_{1}(0 + 1(1 + 01)^{*} 00) + \Lambda$

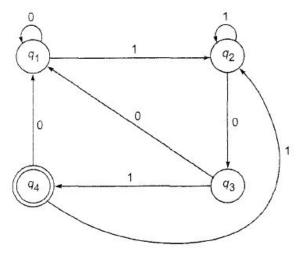
Once again applying Theorem 5.1, we get

 $q_1 = \Lambda(0 + 1(1 + 01)^* 00)^* = (0 + 1(1 + 01)^* 00)^*$

As q_1 is the only final state, the regular expression corresponding to the given diagram is $(0 + 1(1 + 01)^* 00)^*$.

Department of CSE, GIET University, Gunupur

Example



By applying Theorem 5.1, we obtain

$$\mathbf{q}_2 = (\mathbf{q}_1\mathbf{1})(\mathbf{1} + \mathbf{0}\mathbf{1}\mathbf{1})^* = \mathbf{q}_1(\mathbf{1}(\mathbf{1} + \mathbf{0}\mathbf{1}\mathbf{1})^*)$$

From the q_l -equation, we have

$$q_{l} = q_{l}0 + q_{2}00 + q_{2}010 + \Lambda$$

$$= q_{l}0 + q_{2}(00 + 010) + \Lambda$$

$$= q_{l}0 + q_{l}l(1 + 011)^{*} (00 + 010) + \Lambda$$
Again, by applying Theorem 5.1, we obtain
$$q_{l} = \Lambda(0 + 1(1 + 011)^{*} (00 + 010))^{*}$$

$$q_{4} = q_{2}01 = q_{l}l(1 + 011)^{*} 01$$

$$= (0 + 1(1 + 011)^{*}(00 + 010))^{*}(1(1 + 011)^{*} 01)$$

Solution

There is only one initial state, and there are no Λ -moves. So, we form the equations corresponding to \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 , \mathbf{q}_4 :

$$q_{1} = q_{1}0 + q_{3}0 + q_{4}0 + \Lambda$$
$$q_{2} = q_{1}l + q_{2}1 + q_{4}1$$
$$q_{3} = q_{2}0$$
$$q_{4} = q_{3}1$$

Now.

 $\mathbf{q}_4 = \mathbf{q}_3 \mathbf{1} = (\mathbf{q}_2 \mathbf{0}) \mathbf{1} = \mathbf{q}_2 \mathbf{0} \mathbf{1}$

Thus, we are able to write q_3 , q_4 in terms of q_2 . Using the q_2 -equation, we get

$$\mathbf{q}_2 = \mathbf{q}_1 \mathbf{l} + \mathbf{q}_2 \mathbf{1} + \mathbf{q}_2 \mathbf{0} \mathbf{1} \mathbf{1} = \mathbf{q}_1 \mathbf{l} + \mathbf{q}_2 (\mathbf{1} + \mathbf{0} \mathbf{1} \mathbf{1})$$

Design a DFA over $\Sigma = (a, b)$, which recognize the language having even number of a and even number of b. And convert to corresponding RE

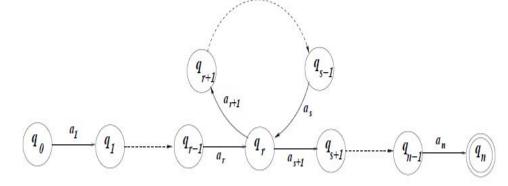
Pumping Lemma for Regular languages:

Theorem:(Pumping Lemma). If L is an infinite regular language, then there exists a number p (Pumping length) such that for all $w \in L$ with $|w| \ge p$, w can be written as xyz satisfying the following:

- 1. For all $i \ge 0$ $xy^i z \in L$
- 2. |y|>0
- 3. |xy|<=p

Proof:

Let $M=(Q, \sum, \delta, q0, F)$ be a DFA. Let $w=a_1, a_2, a_3, \dots, a_n$, n>p be a string. Let q_1, q_2, \dots, q_{n+1} be the sequence of state that M enters while processing. So $q_{i+1} = \delta(q_i, a_i)$, $1 \le i \le n$ be the sequence of length n+1 which is at least p+1. Among the sequence of state two must be in same state. (By pigeonhole principle)



We call the first of these q_j and second is q_l because q_l occurs among the first p+1place in the sequence.

We have $l \le p+1$. Now let $w = a_1, a_2, a_3, \dots a_{j-1}$ $X=a1, a2, \dots a_{j-1}$ $y = a_j, \dots a_{j-1}$ $Z=a_1, \dots a_n$ As x takes M from q_1 to q_j , Y takes M for q_j to q_j , Z takes q_{j+1} to q_{n+1} which is acceptance state Hence M must accept $xy^i z$ for all I And $l \le p+1$ so $|xy| \le p$, as we reach in final state $xy^i z \in L$

Pumping Lemma Example: Prove that aⁿbⁿ is not regular Proof:

```
Let us assume a^n b^n is Regular language.

w=a^n b^{n,} |w|=2n>n, where n is the pumping length

By pumping lemma w=xyz with |xy|<=n, |y| \ge 1

We need to find x y<sup>i</sup>z

Case 1: y has 'a' ie y=a^k, k>0

Case 2 y has 'b' ie y=b^k, k>0

Case 3 y has both a and b ie y=a^k b^l, k,l \ge 1

Case 1: y has 'a' ie y=a^k, k>0

xy^2z=a^{n-k}a^ka^kb^n=a^{n+k}b^n \notin L

Hence what we assumed a^nb^n is Regular language is wrong. Hence a^nb^n is not Regular language.
```

Similarly we can do for other two case.

Prove that a^p is not regular, where p is a prime number

Let us assume $\mathbf{a}^{\mathbf{p}}$ is Regular language. w= $\mathbf{a}^{\mathbf{p}}$, |w|=p>=m, where m is the pumping length

```
w= a^{p}= xyz, where |xy| \le p, |y| > 0
Now evaluate xy^{p+1}z
Length(xy^{p+1}z)= Length(xy^{p}yz)= Length(xyz)+Length(y^{p})= p+p(length(y))
=p+p.m
=p(1+m) which is not prime number.
Hence what we assumed a^{p} is Regular language is wrong.
So a^{p} is not Regular language
```


Prove that a^{i^2} i>=1is not regular Proof:

Let a^{i^2} is regular $W=a^{n^2}$, $|w|=n^2>n$ by pumping lemma W=xyz with |xy|<=n, |y|>0Now $|xy^2z|=$

Thank You

Department of CSE, GIET University, Gunupur